Answer on question \#72807, Physics / Electromagnetism

A proton with energy 1 MeV move perpendicular to the earth B field of 0.5 gauss or 0.00005 T find radius \& frequency of orbit?

Solution:

$E=\frac{m v^{2}}{2} \rightarrow v=\sqrt{\frac{2 E}{m}}-$ non-relativistic case, as energy is much less that mass of the proton.
According to $2^{\text {nd }}$ Newtons law: $F=m a \rightarrow q B v=\frac{m v^{2}}{r} \rightarrow r=\frac{m v}{q B}=\frac{m}{q B} \sqrt{\frac{2 E}{m}}=\frac{\sqrt{2 m E}}{q B}$
$r=\frac{\sqrt{2 * 1.67 * 10^{-27} * 1.6 * 10^{-13}}}{1.6 * 10^{-19} * 5 * 10^{-5}}=2.9 * 10^{3} \mathrm{~m}-$ radius of the orbit
$\vartheta=\frac{\omega}{2 \pi}=\frac{v}{2 \pi r}=\frac{1}{r} \sqrt{\frac{E}{2 m}}=\frac{1}{2.9 * 10^{3}} \sqrt{1.6 * \frac{10^{-13}}{2 * 1.67 * 10^{-27}}}=2.4 * 10^{2} \mathrm{~Hz}$ - frequency

Answer:
$2.9 * 10^{3} \mathrm{~m}, 2.4 * 10^{2} \mathrm{~Hz}$
Answer provided by https://www.AssignmentExpert.com

