Answer on Question \#72806-Physics-Mechanics-Relativity

A bullet loses $1 / n$ if its velocity while penetrating a distance x into the target. The further distance travelled before coming to rest?

Solution

$$
F x=\frac{m v^{2}}{2}-\frac{m}{2}\left(\left(1-\frac{1}{n}\right) v\right)^{2}=\frac{m v^{2}}{2}\left(1-\left(1-\frac{1}{n}\right)^{2}\right)=\frac{m v^{2}}{2}\left(1-1-\frac{1}{n^{2}}+\frac{2}{n}\right)=\frac{m v^{2}}{2}\left(\frac{2 n-1}{n^{2}}\right)
$$

The initial kinetic energy is

$$
\frac{m v^{2}}{2}=\frac{F x}{\left(\frac{2 n-1}{n^{2}}\right)}=F D .
$$

Where $D=x+d$.

$$
\begin{gathered}
\frac{F x}{\left(\frac{2 n-1}{n^{2}}\right)}=F(x+d) \\
(x+d)=\frac{x}{\left(\frac{2 n-1}{n^{2}}\right)}=\frac{n^{2}}{2 n-1} x
\end{gathered}
$$

The further distance travelled before coming to rest is

$$
d=\frac{n^{2}}{2 n-1} x-x=x \frac{n^{2}-2 n+1}{2 n-1}=x \frac{(n-1)^{2}}{2 n-1} .
$$

Answer provided by https://www.AssignmentExpert.com

