Answer on Question \#72739-Physics-Other

To celebrate summer break some non-physics many students decide to make a waterslide. These non-physics students decide to put one end of the slide on 820 m high roof at Mooney and the other end in the teacher's parking lot heading out to Erie Street The slide ends 5 m before the street and makes an angle of 26.5°. The physics students however are worried that students will slide into the street and incoming traffic. You determine the waterslide friction will be negligible but the pavement will have a coefficient of friction with clothes of .90 . How far will the students slide on the pavement?

Solution

From the conservation of energy:

$$
\frac{m v^{2}}{2}=m g h
$$

The speed of student before the flying:

$$
v=\sqrt{2 g h}
$$

The horizontal speed at the end of waterslide:

$$
\begin{gathered}
v_{x}=v \cos \theta \\
v_{x}^{2}=2 a d \\
a=\mu g \\
v_{x}^{2}=2 \mu g d \\
d=\frac{v_{x}^{2}}{2 \mu g}=\frac{(\sqrt{2 g h} \cos \theta)^{2}}{2 \mu g}=\frac{2 g h}{2 \mu g} \cos ^{2} \theta=\frac{h}{\mu} \cos ^{2} \theta \\
d=\frac{820}{0.90} \cos ^{2}\left(26.5^{\circ}\right)=730 m
\end{gathered}
$$

Answer: 730 m.
Answer provided by https://www.AssignmentExpert.com

