## Answer on Question 72732, Physics / Mechanics | Relativity Question

A car decelerates uniformly from 20 ms to rest in 12 seconds, then reverses with uniform acceleration to its original starting point also in 4seconds.
a.Draw a v-t graph

Solution.


At initial time, $t=0 \mathrm{~s}$, the velocity is $v=12 \mathrm{~m} / \mathrm{s}$. Put the point 1 on the graph that corresponds to these values. In $t=12 \mathrm{~s}$ the velocity is $v=0 \mathrm{~m} / \mathrm{s}$. Put the point 2 on the graph that corresponds to these values. Since a car decelerates uniformly draw a line 1-2. The area between the line and the time axis on a velocity-time graph, between two times is the displacement change $\Delta x$ during that time interval. We find that

$$
\Delta x=\frac{1}{2} \cdot 20 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~s}=120 \mathrm{~m}
$$

After stopping the car moves in opposite direction to the same distance in 4 seconds with uniform acceleration to its original starting point. So we can find the velocity at its original starting point from the equation

$$
\Delta x=\frac{1}{2} \cdot v \mathrm{~m} / \mathrm{s} \cdot 4 \mathrm{~s}=-120 \mathrm{~m}
$$

The minus sign means that the displacement occurs in the opposite direction. Solving this equation we get $v=-60 \mathrm{~m} / \mathrm{s}$. Put the point 3 on the graph that corresponds to $t=12+4=$ 16 s and $v=-60 \mathrm{~m} / \mathrm{s}$. Then draw a line 2-3.

