Answer on Question \#72728 - Physics / Classical Mechanics

A boy pushes a box with a mass of $m=20 \mathrm{~kg}$ with a force of $F=150 \mathrm{~N}$ at $\alpha=45^{\circ}$ angle towards the bottom of the x axis. Calculate the a) friction force and b) acceleration of the box. The friction coefficient with the floor is $\mu=0.2$.

Solution:

Let us apply a Newton's second law

$$
m \mathbf{a}=\mathbf{F}_{\text {net }}
$$

in projection on the axis

$$
\begin{gathered}
m a=F \cos \alpha-F_{\text {frict }} \\
0=-F \sin \alpha+N-m g \\
F_{\text {frict }}=\mu N
\end{gathered}
$$

So

$$
\begin{gathered}
N=m g+F \sin \alpha \\
F_{\text {frict }}=\mu(m g+F \sin \alpha)=0.2\left(20 \times 9.8+150 \sin 45^{\circ}\right)=60.4 \mathrm{~N}
\end{gathered}
$$

Acceleration

$$
a=\frac{F \cos \alpha-F_{\text {frict }}}{m}=\frac{150 \cos 45^{\circ}-60.4}{20}=2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answers: $60.4 \mathrm{~N}, 2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Answer provided by https://www.AssignmentExpert.com

