Answer on Question \#72727-Physics / Other

A box with a mass of $m=6.0 \mathrm{~kg}$ is thrown on the floor, slides, and stops. If the initial velocity was $v=8 \mathrm{~m} / \mathrm{s}$ and the friction coefficient $\mu=0.30$, calculate the distance s travelled by the box before it stopped.

Solution:

The change of energy=work done

$$
\begin{aligned}
\frac{m v^{2}}{2} & =F_{\text {frict }} s \\
\frac{m v^{2}}{2} & =\mu m g s
\end{aligned}
$$

Thus

$$
\begin{gathered}
s=\frac{v^{2}}{2 \mu g} \\
s=\frac{8^{2}}{2 \times 0.30 \times 9.8}=10.9 \mathrm{~m}
\end{gathered}
$$

Answer: 10.9 m
Answer provided by https://www.AssignmentExpert.com

