Answer on Question \#72670 Physics / Electromagnetism

A spherical balloon has a radius of $R=73 \mathrm{~cm}$, and its surface has been charged uniformly. You measure the electric field to be $E=-E_{S}$ at the balloon's surface, where $E_{S}=25 \mathrm{kN} / \mathrm{C}$.
(a) Calculate the field strength $r_{1}=45 \mathrm{~cm}$ from the balloon's center.
(b) Calculate the field strength $r_{2}=192 \mathrm{~cm}$ from the balloon's center.
(c) Calculate the net charge on the balloon.

Solution:

Let us consider a Gauss's law for spherical symmetry case

$$
\oint_{S} E d A=\frac{Q}{\varepsilon_{0}}
$$

where E is a electric field strength, S is a closed surface, Q is a total charge enclosed within surface, ε_{0} is the electric constant.
(a) Let us consider a surface S as a sphere with radius $r_{1}<R$. Then total charge enclosed within sphere is zero. Thus $E=0$.
(b) When $r>R$

$$
\oint_{S} E d A=E \times 4 \pi r^{2}
$$

So

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

and

$$
\begin{aligned}
E_{S} & =-\frac{Q}{4 \pi \varepsilon_{0} R^{2}} \\
E_{2} & =\frac{Q}{4 \pi \varepsilon_{0} r_{2}^{2}}
\end{aligned}
$$

Thus

$$
E_{2}=-E_{s} \frac{R^{2}}{r_{2}^{2}}=-25\left(\frac{73}{192}\right)^{2}=-3.61 \frac{\mathrm{kN}}{\mathrm{C}}
$$

(c) The net charge of balloon

$$
Q=4 \pi \varepsilon_{0} r_{2}^{2} E_{2}=4 \pi \times 8.85 \times 10^{-12} \times 1.92^{2} \times\left(-3.61 \times 10^{3}\right)=-1.48 \mu \mathrm{C}
$$

Answers: $0,-3.61 \frac{\mathrm{kN}}{\mathrm{C}},-1.48 \mu \mathrm{C}$.
Answer provided by https://www.AssignmentExpert.com

