Answer on Question \#72668, Physics / Other

How many grams of copper are required to make a hollow spherical shell having an inner radius of 5.70 cm and an outer radius of 5.75 cm ? The density of copper being $8.92 \mathrm{~g} / \mathrm{cm}^{3}$.

Solution:

A cross-section of the copper sphere is shown in Figure above. The outer and inner radii are noted as r_{2} and r_{1}, respectively. We must find the volume of space occupied by the copper metal ; this volume is the difference in the volumes of the two spherical surfaces:

$$
V_{\text {shell }}=V_{2}-V_{1}=\frac{4}{3} \pi r_{2}^{3}-\frac{4}{3} \pi r_{1}^{3}=\frac{4}{3} \pi\left(r_{2}^{3}-r_{1}^{3}\right)
$$

With the given values of the radii, we find:

$$
V_{\text {shell }}=\frac{4}{3} \pi\left(5.75^{3}-5.70^{3}\right)=20.59 \mathrm{~cm}^{3}
$$

Now use the definition of density to find the mass of the copper contained in the shell:

$$
\rho=\frac{m}{V_{\text {shell }}}
$$

So,

$$
m=\rho V_{\text {shell }}=(8.92)(20.59)=183.7 \mathrm{~g}
$$

Answer: 183.7 g

