Answer on Question #72637 Physics / Mechanics | Relativity

At a crossing a truck travelling towards the north collides with a car travelling towards the east. After the collision the car and the truck stick together and move off at an angle of $\alpha = 30^{\circ}$ east of north. If the speed of the car before the collision was $v = 20 \text{ ms}^{-1}$, and the mass of the truck is twice the mass of the car *m*, calculate the speed of the truck before and after the collision. **Solution:**

Let us apply momentum conservation law

$$2mv_1 = 3mv \sin 30^{\circ}$$
$$m \times 20 = 3mv \cos 30^{\circ}$$

Thus

$$v_1 = 10 \tan 30^\circ = 5.77 \frac{\text{m}}{\text{s}}$$

 $v = \frac{2}{3} \frac{v_1}{\sin 30^\circ} = 7.7 \frac{\text{m}}{\text{s}}$

Answers: 7.7 $\frac{m}{s}$, 5.77 $\frac{m}{s}$.

Answer provided by https://www.AssignmentExpert.com