Answer on Question \#72637 Physics / Mechanics | Relativity

At a crossing a truck travelling towards the north collides with a car travelling towards the east. After the collision the car and the truck stick together and move off at an angle of $\alpha=30^{\circ}$ east of north. If the speed of the car before the collision was $v=20 \mathrm{~ms}^{-1}$, and the mass of the truck is twice the mass of the car m, calculate the speed of the truck before and after the collision.

Solution:

Let us apply momentum conservation law

$$
\begin{gathered}
2 m v_{1}=3 m v \sin 30^{\circ} \\
m \times 20=3 m v \cos 30^{\circ}
\end{gathered}
$$

Thus

$$
\begin{aligned}
v_{1} & =10 \tan 30^{\circ}=5.77 \frac{\mathrm{~m}}{\mathrm{~s}} \\
v & =\frac{2}{3} \frac{v_{1}}{\sin 30^{\circ}}=7.7 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Answers: $7.7 \frac{\mathrm{~m}}{\mathrm{~s}}, 5.77 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Answer provided by https://www.AssignmentExpert.com

