Answer on Question \#72594 Physics / Mechanics | Relativity

Wheel $R=2.0 \mathrm{~m}$ in diameter lies in the vertical plane and rotates about its central axis with a constant angular acceleration of $=4.0 \mathrm{rad} \cdot \mathrm{s}^{-2}$. The wheel starts at rest at $t=0$ and the radius vector of a point A on the wheel makes an angle of $60^{\circ}=\pi / 3$ with the horizontal at this instant. Calculate the angular speed of the wheel, the angular position of the point A and the total acceleration at $t=2.0 \mathrm{~s}$.

Solution:

The equation of motion for the point A

$$
\varphi=\varphi_{0}+\omega_{0} t+\frac{\varepsilon t^{2}}{2}=\frac{\pi}{3}+0 t+\frac{4.0 t^{2}}{2}=\frac{\pi}{3}+2 t^{2}
$$

The angular speed of the wheel

$$
\omega=\omega_{0}+\varepsilon t=4 t
$$

Total acceleration

$$
a=\sqrt{\varepsilon^{2}+\left(\omega^{2} R\right)^{2}}
$$

At the instant $t=2.0$

$$
\begin{gathered}
\varphi=\frac{\pi}{3}+2 \times 2^{2}=\frac{\pi}{3}+2 \times 2^{2}=9.05 \mathrm{rad}=518^{\circ} \\
\omega=4 \times 2=8 \frac{\mathrm{rad}}{\mathrm{~s}} \\
a=\sqrt{4^{2}+\left(8^{2} \times 2\right)^{2}}=128 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Answers:

518°
$8 \frac{\mathrm{rad}}{\mathrm{s}}$
$128 \mathrm{~m} / \mathrm{s}^{2}$
Answer provided by AssignmentExpert.com

