Answer on Question \#72587, Physics / Mechanics | Relativity |

box of mass 8.0 kg slides at a speed of $10 \mathrm{~ms}-1$ across a smooth level floor before it encounters a rough patch of length 3.0 m . The frictional force on the box due to this part of the floor is 70 N . What is the speed of the box when it leaves this rough surface? What length of the rough surface would bring the box completely to rest?

Solution:

The kinetic energy of the box is

$$
E_{k 1}=\frac{m v_{1}^{2}}{2}=\frac{8.0 \mathrm{~kg} \cdot(10 \mathrm{~m} / \mathrm{s})^{2}}{2}=400 \mathrm{~J} .
$$

The work done by friction is

$$
W=F l=70 \mathrm{~N} \cdot 3.0 \mathrm{~m}=210 \mathrm{~J} .
$$

From the energy conservation law we obtain

$$
E_{k 2}=E_{k 1}-W=400 \mathrm{~J}-210 \mathrm{~J}=190 \mathrm{~J} .
$$

The speed of the box when it leaves this rough surface is

$$
v_{2}=\sqrt{\frac{2 E_{k 2}}{m}}=\sqrt{\frac{2 \cdot 190 \mathrm{~J}}{8.0 k g}}=6.9 \mathrm{~ms}^{-1}
$$

What length L of the rough surface would bring the box completely to rest?
This means that $E^{\prime}{ }_{k 2}=0$ and $E_{k 1}=W^{\prime}=F L$.

$$
L=\frac{E_{k 1}}{F}=\frac{400 \mathrm{~J}}{70 \mathrm{~N}}=5.7 \mathrm{~m}
$$

Answer: $v_{2}=6.9 \mathrm{~ms}^{-1}$ and $L=5.7 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

