Answer on Question 72586, Physics / Mechanics | Relativity Question

Ball having a mass of 0.5 kg is moving towards the east with a speed of $8.0 \mathrm{~ms}-1$.
After being hit by a bat it changes its direction and starts moving towards the north with a speed of $6.0 \mathrm{~ms}-1$. If the time of impact is 0.1 s , calculate the impulse and average force acting on the ball.

Solution.

Momentum of a ball is

$$
\vec{p}=m \vec{v}
$$

where m is a mass of the ball, \vec{v} is a velocity of the ball. Momentum \vec{p} is a vector having the same direction as the velocity \vec{v}.
Impulse is the change in momentum

$$
\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}=m \Delta \vec{v}=m\left(\vec{v}_{f}-\vec{v}_{i}\right)
$$

where subscripts i and f mean the initial and final values.
Let the direction to the east be the x axis, and the direction to the north be the y axis as shown in the figure

Since at first the ball moved towards the east, then $v_{i}=v_{i x}=8.0 \mathrm{~m} / \mathrm{s}$ and $v_{i y}=0 \mathrm{~m} / \mathrm{s}$. After being hit by a bat it moved towards the north, then $v_{f x}=0 \mathrm{~m} / \mathrm{s} v_{f}=v_{f y}=6.0 \mathrm{~m} / \mathrm{s}$.

Then for x -component of momentum we have

$$
\begin{gathered}
p_{i}=p_{i x}=m v_{i x}=0.5 \mathrm{~kg} \cdot 8.0 \mathrm{~m} / \mathrm{s}=4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
p_{f x}=m v_{f x}=0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

for y -component of momentum we have

$$
\begin{aligned}
p_{i y} & =m v_{i y}=0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
p_{f y}=m v_{f y} & =0.5 \mathrm{~kg} \cdot 6.0 \mathrm{~m} / \mathrm{s}=3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The x -component of impulse is

$$
\Delta p_{x}=p_{2 x}-p_{1 x}=0-4=-4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

The y -component of impulse is

$$
\Delta p_{y}=p_{2 y}-p_{1 y}=3-0=3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Magnitude of impulse is defined as

$$
\Delta p=|\Delta \vec{p}|=\sqrt{\Delta p_{x}^{2}+\Delta p_{y}^{2}}=\sqrt{(-4)^{2}+3^{2}}=\sqrt{25}=5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Average force acting on the ball is defined as

$$
\overrightarrow{\mathrm{F}}_{a v}=\frac{\Delta \overrightarrow{\mathrm{p}}}{\Delta t}
$$

Magnitude of average force acting on the ball is

$$
\mathrm{F}_{a v}=\left|\overrightarrow{\mathrm{F}}_{a v}\right|=\frac{|\Delta \overrightarrow{\mathrm{p}}|}{\Delta t}
$$

Substituting $|\Delta \vec{p}|=5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ and the time of impact $\Delta t=0.1 \mathrm{~s}$ we get average force

$$
\mathrm{F}_{a v}=\frac{5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{0.1 \mathrm{~s}}=50 \mathrm{~N}
$$

Answer: impulse of the ball is $\Delta p=5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$, average force acting on the ball is $\mathrm{F}_{a v}=50 \mathrm{~N}$

Answer provided by AssignmentExpert.com

