Answer on Question \#72572, Physics / Electric Circuits

$A+2.00-n C$ point charge is at the origin, and a second $-5.00-n C$ point charge is on the x-axis at $x=0.8 \mathrm{~m}$. A) Find the electric field (magnitude and direction) at each of the following points on the x axis. i) x 2.00 m ; ii) $\mathrm{x}=1.2 \mathrm{~m}$ iii) $\mathrm{x}=-0.2 \mathrm{~m}$. b) Find the net electric force that the two charges would exert on an electron placed at each point in part a).

Answer:

A) $\vec{E}=\vec{E}_{1}+\vec{E}_{2}$
$E_{i}=\frac{k q_{1}}{r_{1 i}^{2}}-\frac{k q_{2}}{r_{2 i}^{2}}=9 * 10^{9} *\left(2 * \frac{10^{-9}}{2^{2}}-5 * \frac{10^{-9}}{1.2^{2}}\right)=-26.75 \frac{\mathrm{~N}}{\mathrm{C}}$
$E_{i i}=\frac{k q_{1}}{r_{1 i i}^{2}}-\frac{k q_{2}}{r_{2 i i}^{2}}=9 * 10^{9} *\left(2 * \frac{10^{-9}}{1.2^{2}}-5 * \frac{10^{-9}}{0.4^{2}}\right)=-268.75 \frac{\mathrm{~N}}{\mathrm{C}}$
$E_{i i i}=-\frac{k q_{1}}{r_{1 i i i}^{2}}+\frac{k q_{2}}{r_{2 i i i}^{2}}=9 * 10^{9} *\left(-2 * \frac{10^{-9}}{0.2^{2}}+5 * \frac{10^{-9}}{1^{2}}\right)=-405 \frac{\mathrm{~N}}{\mathrm{C}}$

Minus sign indicated that electric field is directed in negative OX direction
B)
$F_{i}=q E_{i}=1.6 * 10^{-19} * 26.75=42.8 * 10^{-19} N$
$F_{i i}=q E_{i i}=1.6 * 10^{-19} * 268.75=42.8 * 10^{-19} \mathrm{~N}$
$F_{i i i}=q E_{i i i}=1.6 * 10^{-19} * 405=648 * 10^{-19} N$

