Answer on Question \#72548-Physics-Other

A satellite of mass 36 kg revolves round d earth at a position 20 m away. What angular velocity does the satellite make with the earth?

Solution

Using $3^{\text {rd }}$ Kepler's Law we were able to get the semi-major axis distance in terms of the period of motion. Here we assume a simpler circular motion:

$$
\begin{gathered}
R^{3}=\frac{G M}{4 \pi^{2}} T^{2} \\
\left(20+6.37 \cdot 10^{6}\right)^{3}=\frac{\left(6.67 \cdot 10^{-11}\right)\left(5.972 \cdot 10^{24}\right)}{4 \pi^{2}} T^{2}
\end{gathered}
$$

$$
T=5061 \mathrm{~s}
$$

The angular speed is

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{5061}=0.0012 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

Answer: $0.0012 \frac{\mathrm{rad}}{\mathrm{s}}$.

Answer provided by AssignmentExpert.com

