

Answer on Question #72537-Physics-Mechanics-Relativity

H₂O is flowing smoothly through a closed pipe system. At one point the speed of the H₂O is 3.0 m/s while at another point, 1.0 m higher the speed is 4.0 m/s. If the pressure is 20 kPa at the lower point, what is the pressure at the upper point? What would be the pressure at the upper point be if the H₂O were to stop flowing and the pressure at lower point were 18 kPa?

Solution

1)

$$p_1 + \frac{\rho v_1^2}{2} = p_2 + \frac{\rho v_2^2}{2} + \rho gh$$

$$p_2 = p_1 + \rho \left(\frac{v_1^2 - v_2^2}{2} - gh \right)$$

$$p_2 = 20000 + 1000 \left(\frac{3^2 - 4^2}{2} - (1)(9.8) \right) = 6700 \text{ Pa} = 6.7 \text{ kPa.}$$

2)

$$p_1 = p_2 + \rho gh$$

$$p_2 = p_1 - \rho gh$$

$$p_2 = 18000 - 1000((1)(9.8)) = 8200 \text{ Pa} = 8.2 \text{ kPa.}$$

Answer provided by AssignmentExpert.com