Answer on Question \#72537-Physics-Mechanics-Relativity

H 2 O is flowing smoothly through a closed pipe system. At one point the speed of the H 2 O is $3.0 \mathrm{~m} / \mathrm{s}$ while at another point, 1.0 m higher the speed is $4.0 \mathrm{~m} / \mathrm{s}$. If the pressure is 20 kPa at the lower point, what is the pressure at the upper point? What would be the pressure at the upper point be if the H 2 O were to stop flowing and the pressure at lower point were 18 kPa ?

Solution

1)

$$
\begin{gathered}
p_{1}+\frac{\rho v_{1}^{2}}{2}=p_{2}+\frac{\rho v_{2}^{2}}{2}+\rho g h \\
p_{2}=p_{1}+\rho\left(\frac{v_{1}^{2}-v_{2}^{2}}{2}-g h\right) \\
p_{2}=20000+1000\left(\frac{3^{2}-4^{2}}{2}-(1)(9.8)\right)=6700 \mathrm{~Pa}=6.7 \mathrm{kPa} .
\end{gathered}
$$

2)

$$
\begin{gathered}
p_{1}=p_{2}+\rho g h \\
p_{2}=p_{1}-\rho g h \\
p_{2}=18000-1000((1)(9.8))=8200 \mathrm{~Pa}=8.2 \mathrm{kPa} .
\end{gathered}
$$

