Answer on Question #72519-Physics-Other

A satellite orbits the earth in a circular orbit at a height of 50000 km with what speed does it travel? How long does it take to make one revolution of the earth?

Solution

1) Using 3rd Kepler's Law we were able to get the semi-major axis distance in terms of the period of motion. Here we assume a simpler circular motion:

$$R^3 = \frac{GM}{4\pi^2}T^2$$

$$(50 \cdot 10^6 + 6.37 \cdot 10^6)^3 = \frac{(6.67 \cdot 10^{-11})(5.972 \cdot 10^{24})}{4\pi^2} T^2$$

T = 133238 s = 37 h.

2) The speed is

$$v = \frac{2\pi R}{T} = \frac{2\pi (50 \cdot 10^6 + 6.37 \cdot 10^6)}{133238} = 2658 \frac{m}{s}.$$

Answer provided by https://www.AssignmentExpert.com