Answer on Question \#72519-Physics-Other

A satellite orbits the earth in a circular orbit at a height of 50000 km with what speed does it travel? How long does it take to make one revolution of the earth?

Solution

1) Using $3^{\text {rd }}$ Kepler's Law we were able to get the semi-major axis distance in terms of the period of motion. Here we assume a simpler circular motion:

$$
\begin{gathered}
R^{3}=\frac{G M}{4 \pi^{2}} T^{2} \\
\left(50 \cdot 10^{6}+6.37 \cdot 10^{6}\right)^{3}=\frac{\left(6.67 \cdot 10^{-11}\right)\left(5.972 \cdot 10^{24}\right)}{4 \pi^{2}} T^{2} \\
T=133238 s=37 h .
\end{gathered}
$$

2) The speed is

$$
v=\frac{2 \pi R}{T}=\frac{2 \pi\left(50 \cdot 10^{6}+6.37 \cdot 10^{6}\right)}{133238}=2658 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer provided by https://www.AssignmentExpert.com

