Answer on Question \#72505-Physics-Other

1. The acceleration of a particle in rectilinear motion is defined by $a=k$ square root of v, where a is in $m / s^{\wedge} 2, v$ is is m / s and k is a constant. Given that at times $\mathrm{t}=2 \mathrm{sec}$ and $\mathrm{t}=3 \mathrm{sec}$, the velocities are respectively $4 \mathrm{~m} / \mathrm{s}$ and $9 \mathrm{~m} / \mathrm{s}$, and the displacement at $\mathrm{t}=3 \mathrm{sec}$ is 20 m . Determine the values of k and Vo or Vinitial. Write the equation of motion.

Solution

$$
\begin{gathered}
a=\frac{d v}{d t}=k \sqrt{v} \\
\frac{d v}{\sqrt{v}}=k t \\
\frac{\sqrt{v}}{\frac{1}{2}}=k t+C \\
2\left(\sqrt{v}-\sqrt{v_{0}}\right)=k t \\
\sqrt{v}=\sqrt{v_{0}}+\frac{k t}{2} \\
v=\left(\sqrt{v_{0}}+\frac{k t}{2}\right)^{2} \\
4=\left(\sqrt{v_{0}}+k\right)^{2} \\
9=\left(\frac{2 t}{2}\right)^{2}=t^{2} \\
\left.\frac{d x}{d t}=v_{0}+\frac{3 k}{2}\right)^{2} \\
\sqrt{v_{0}}=\mathbf{0} \frac{\boldsymbol{m}}{\boldsymbol{s}} \\
\sqrt{v_{0}}+k=2 \\
\sqrt{v_{0}}+\frac{3 k}{2}=2 \\
k \\
\frac{v_{0}}{2}=1 \\
\boldsymbol{s}^{\frac{3}{2}} \\
2
\end{gathered}
$$

$$
\begin{gathered}
x=C+\frac{t^{3}}{3} \\
20=C+\frac{3^{3}}{3}=C+9 \\
C=11 .
\end{gathered}
$$

The equation of motion is

$$
x=11+\frac{t^{3}}{3}
$$

2. A car starts from rest at Point O. A car covers 100 m in 10 seconds (Point A to B), while accelerating uniformly at a rate of $1 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. Determine
a) Velocities of the car at Point A and Point B.
b) Distance traveled before coming to this point A assuming it started from rest
c) Its velocity after the next 10 seconds (Point C)

Solution

a)

$$
\begin{gathered}
d=a \frac{t^{2}}{2} \\
d_{2}-d_{1}=\frac{a}{2}\left(t_{2}^{2}-t_{1}^{2}\right)=\frac{a}{2}\left(t_{2}-t_{1}\right)\left(t_{2}+t_{1}\right) \\
100=\frac{1}{2}(10)\left(t_{2}+t_{1}\right) \\
\left(t_{2}+t_{1}\right)=20 \\
t_{2}-t_{1}=10 \rightarrow t_{2}=t_{1}+10 . \\
\left(t_{1}+10+t_{1}\right)=20 \\
2 t_{1}=10 \\
t_{1}=5 \mathrm{~s} . \\
t_{2}=15 \mathrm{~s} . \\
\boldsymbol{v}_{\boldsymbol{a}}=\mathbf{1}(\mathbf{5})=\mathbf{5} \frac{\boldsymbol{m}}{\boldsymbol{s}} . \\
\boldsymbol{v}_{\boldsymbol{b}}=\mathbf{1}(\mathbf{1 5})=\mathbf{1 5} \frac{\boldsymbol{m}}{\boldsymbol{s}} .
\end{gathered}
$$

b)

$$
d_{1}=\frac{1}{2}(5)^{2}=12.5 \mathrm{~m}
$$

c)

$$
v_{c}=1(15+10)=25 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer provided by AssignmentExpert.com

