## Answer on Question \#72495-Physics-Other

A wire 0.8 m long of total mass 40 g is stretched between two points, and a pipe 1.5 m long and closed at one end is placed nearly. The speed of sound in air is $350 \mathrm{~m} / \mathrm{sec}$. What should be the tension in the wire in order for the 6th harmonic of the wire to be in resonance with the 2 nd overtone of the pipe?

## Solution

For the wire:

$$
f=\frac{n}{2 L} \sqrt{\frac{T}{\mu}}=\frac{n}{2 L} \sqrt{\frac{T}{\frac{m}{L}}}
$$

For the pipe:

$$
f=n^{\prime} \frac{v}{4 l}
$$

In our case:

$$
n=6, n^{\prime}=3
$$

Thus,

$$
\begin{gathered}
\frac{6}{2(0.8)} \sqrt{\frac{T}{\frac{0.04}{0.8}}}=3 \frac{350}{4(1.5)} \\
3.75 \sqrt{\frac{T}{0.05}}=175 \\
T=0.05\left(\frac{175}{3.75}\right)^{2}=109 \mathrm{~N}
\end{gathered}
$$

Answer: 109 N.

