Answer on Question 72494, Physics, Other

Question:

A football is kicked with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 25°. If it hits the ground 1.5 s later, how far does it travel?

Solution:

Let's first find the projections of the initial velocity of the football on axis x and y :

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos \alpha=10 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \cos 25^{\circ}=9.1 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{0 y}=v_{0} \sin \alpha=10 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin 25^{\circ}=4.23 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Then, we can find the flight time of the football. Let's consider the motion of the football in the vertical direction. We can find the time $t_{\text {rise }}$ that the football need to reach the maximum altitude from the kinematic equation:

$$
v=v_{0 y}-g t_{\text {rise }},
$$

here, $v_{0 y}$ is the projection of the initial velocity of the football on axis $y, v=0$ is the velocity of the football at maximum altitude, $g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity.

Then, we get:

$$
t_{\text {rise }}=\frac{v_{0 y}}{g}=\frac{4.23 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=0.43 \mathrm{~s}
$$

Finally, we can find the flight time of the football multiply $t_{\text {rise }}$ by 2 (and we can clearly see that the time flight of the football in the initial condition of the question is incorrect):

$$
t_{\text {flight }}=2 \cdot t_{\text {rise }}=2 \cdot 0.43 \mathrm{~s}=0.86 \mathrm{~s}
$$

Let's consider the motion of the football in the horizontal direction. We can find how far does the football travel from the formula:

$$
x=v_{0 x} \cdot t_{\text {flight }}=9.1 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 0.86 \mathrm{~s}=7.82 \mathrm{~m} .
$$

Answer:

$x=7.82 \mathrm{~m}$.

Answer provided by AssignmentExpert.com

