Answer on Question \#72469-Physics-Other

A ball is thrown upward from the ground. You observe the ball through a window on its way up, and notice that it was visible for 1.9 seconds while it travels from the bottom of the window to the top, which is a length of 51.71705 metres.

How much time does it take for the ball to be seen again, in seconds?

Solution

$$
\begin{gathered}
h=v t-\frac{g t^{2}}{2} . \\
h_{1}=v t_{1}-\frac{g t_{1}^{2}}{2} \\
h_{2}=v t_{2}-\frac{g t_{2}^{2}}{2} \\
h_{2}-h_{1}=v\left(t_{2}-t_{1}\right)-\frac{g}{2}\left(t_{2}^{2}-t_{1}^{2}\right) \\
v=\frac{h_{2}-h_{1}}{t_{2}-t_{1}}+\frac{g}{2}\left(t_{1}+t_{2}\right)
\end{gathered}
$$

At maximum height:

$$
\begin{gathered}
v-g T=0, T=\frac{v}{g} \\
T=\frac{1}{g} \frac{h_{2}-h_{1}}{t_{2}-t_{1}}+\frac{1}{2}\left(t_{1}+t_{2}\right)
\end{gathered}
$$

We need to find:

$$
\begin{gathered}
t^{\prime}=2\left(T-t_{2}\right)=2\left(\frac{1}{g} \frac{h_{2}-h_{1}}{t_{2}-t_{1}}+\frac{1}{2}\left(t_{1}+t_{2}\right)-t_{2}\right)=\frac{2}{g} \frac{h_{2}-h_{1}}{t_{2}-t_{1}}-\left(t_{2}-t_{1}\right) \\
t^{\prime}=\frac{2}{9.81} \frac{51.71705}{1.9}-1.9=3.65 \mathrm{~s}
\end{gathered}
$$

Answer: 3.65 s.

Answer provided by AssignmentExpert.com

