Answer on Question \#72396-Physics-Mechanics-Relativity

A cubical block of wood 10 cm on a side \& rho wood $=0.5 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$ floats in a jar of water. Oil of density 0.8 $\mathrm{g} / \mathrm{cm}^{\wedge} 3$ is poured into the water until the top of the oil layer is 4 cm below the top of the block. How deep is the oil?

Solution

Side of cubical block is

$$
L=0.1 \mathrm{~m}
$$

Density of wood is

$$
d_{1}=500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Density of oil is

$$
d_{2}=800 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The top of the oil layer is 0.04 m below the top of the block.
Area of face of wooden block is

$$
A=0.01 \mathrm{~m}^{2}
$$

Volume of wooden block is

$$
V=0.001 \mathrm{~m}^{3} .
$$

Weight of wooden block is

$$
W_{b}=0.1 \mathrm{~A} \cdot 500 \mathrm{~g}=50 \mathrm{Ag} .
$$

Suppose depth of oil layer is x .
Volume of oil displaced is

$$
V_{o}=x A
$$

Weight of oil displaced is

$$
W_{o}=800 \mathrm{xAg}
$$

Volume of water displaced is

$$
V_{w}=(0.1-0.04-x) A=(0.06-x) A
$$

Weight of water displaced is

$$
W_{w}=1000(0.06-x) \mathrm{Ag}
$$

From law of floatation:

$$
\begin{gathered}
W_{o}+W_{w}=W_{b} \\
800 x A g+1000(0.06-x) A g=50 \mathrm{Ag} \\
800 x+1000(0.06-x)=50 \\
x=0.05 \mathrm{~m}=5 \mathrm{~cm} .
\end{gathered}
$$

Answer: 5 cm.

Answer provided by AssignmentExpert.com

