Answer to Question #72392, Physics / Mechanics | Relativity

Given,

$$T_1 = T_0$$
 $n_1 = 2$

$$T_2 = 2T_0$$
 $n_2 = 4$

Let the volume of the gases are V and mixed at a container with same volume V.

I have assumed the volume because without knowing the information about volume this problem can't be solved.

So,
$$V_1 = V_2 = V$$

Now, their pressure before mixing are -

$$P_1 = \frac{n_1 R T_1}{V_1}$$

$$P_2 = \frac{n_2 R T_2}{V_2}$$

After mixing,

$$n = n_1 + n_2$$

Now, from the Daltons low of partial pressure

Net pressure $P = P_1 + P_2$

$$= \frac{n_1 R T_1}{V_1} + \frac{n_2 R T_2}{V_2}$$

Let after mixing the temperature become T

Answer to Question #72392, Physics / Mechanics | Relativity

Now,
$$T = \frac{PV}{nR}$$

$$= \frac{(\frac{n_1 R T_1}{V_1} + \frac{n_2 R T_2}{V_2})V}{nR}$$

$$= \frac{(\frac{2RT_0}{V} + \frac{4R2T_0}{V})V}{6R}$$

Answer provided by AssignmentExpert.com