Answer to Question \#72392, Physics / Mechanics | Relativity

Given,

$$
\begin{array}{ll}
T_{1}=T_{0} & n_{1}=2 \\
T_{2}=2 T_{0} & n_{2}=4
\end{array}
$$

Let the volume of the gases are V and mixed at a container with same volume V .
I have assumed the volume because without knowing the information about volume this problem can't be solved.

So, $V_{1}=V_{2}=\mathrm{V}$
Now, their pressure before mixing are -
$P_{1}=\frac{n_{1} R T_{1}}{V_{1}}$
$P_{2}=\frac{n_{2} R T_{2}}{V_{2}}$
After mixing,

$$
\mathrm{n}=\quad n_{1}+n_{2}
$$

Now, from the Daltons low of partial pressure
Net pressure $\mathrm{P}=P_{1}+P_{2}$

$$
=\frac{n_{1} R T_{1}}{V_{1}}+\frac{n_{2} R T_{2}}{V_{2}}
$$

Let after mixing the temperature become T

Answer to Question \#72392, Physics / Mechanics Relativity

Now,

$$
\begin{aligned}
& \mathrm{T}=\frac{P V}{n R} \\
& =\frac{\left(\frac{n_{1} R T_{1}}{V_{1}}+\frac{n_{2} R T_{2}}{V_{2}}\right) V}{n R} \\
& =\frac{\left(\frac{2 R T_{0}}{V}+\frac{4 R 2 T_{0}}{V}\right) V}{6 R}
\end{aligned}
$$

