Answer on Question \#72386-Physics-Other

An automobile tire has a volume of $988 \mathrm{in}^{\wedge} 3$ and contains air at a gauge pressure of $24 \mathrm{lb} / \mathrm{in} \wedge 2$ (psi) when the temperature is $-2.6^{\circ} \mathrm{C}$. Find the temperature of air in the tire when its volume increases to 1020 in^ 3 and its gauge pressure becomes $26.9 \mathrm{lb} / \mathrm{in}^{\wedge} 2$.

Solution

For the ideal gas we have:

$$
\begin{gathered}
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \\
T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)\left(\frac{V_{2}}{V_{1}}\right) \\
T_{2}=(273.15-2.6)\left(\frac{26.9}{24}\right)\left(\frac{1020}{988}\right)=313.06 \mathrm{~K}
\end{gathered}
$$

The temperature of air in the tire when its volume increases to $1020 \mathrm{in} \wedge 3$ and its gauge pressure becomes 26.9 $\mathrm{lb} / \mathrm{in}^{\wedge} 2$ is

$$
t_{2}=313.06-273.15=39.9^{\circ} \mathrm{C}
$$

Answer: $39.9^{\circ} \mathrm{C}$.

Answer provided by AssignmentExpert.com

