Answer on Question \#72359, Physics / Atomic and Nuclear Physics

A radioactive isotope of mercury decays into gold with a decay constant of 0.018 . (a) Calculate its half-life (b) what fraction of this original amount will remain after three half-life (c) after 10 days.

Answer:

a)

The decay constant is $r=0.018$.

$$
\begin{gathered}
t_{1 / 2}=\frac{\ln 2}{r} \\
t_{1 / 2}=\frac{0.693}{0.018}=38.5 \text { hour }
\end{gathered}
$$

b)

$$
N=\frac{1}{2} N_{0}
$$

So

$$
N=\left(\frac{1}{2}\right)^{3} N_{0}=\frac{1}{8} N_{0}=0.125
$$

c)

10 days $=240$ hours

$$
\begin{gathered}
\frac{N}{N_{0}}=2^{-\frac{t}{T}} \\
\frac{N}{N_{0}}=2^{-\frac{240}{35.5}}=0.133
\end{gathered}
$$

Answer: a) 38.5; b) 0.125 ; c) 0.133

Answer provided by AssignmentExpert.com

