Answer to Question \#72320, Physics / Electric Circuits

Two particles each of mass M is attached to 2ends of a massless rigid nonconducting rod of length L. They have $+q$ and $-q$ charges respectively. This arrangement is held in a region of uniform electric field E such that the rod makes a small angle ($<5^{\circ}$) with the field direction. The time period of rod is_? (The rod oscillates about its centre of mass)

Solution.

$$
I \varepsilon=F L \sin \theta
$$

where the force acting at each mass:

$$
F=q E
$$

θ is the angle between the rod and electric field direction Since, θ is small :

$$
\sin \theta \approx \theta
$$

I is the moment of inertia of the rod :

$$
I=\frac{M L^{2}}{2}
$$

ε is angular acceleration

$$
\varepsilon=\frac{d \omega}{d t} ; \omega=\frac{d \theta}{d t} \Rightarrow \varepsilon=\frac{d \omega}{d \theta} \omega
$$

where ω is angular velocity.
Then:

$$
\begin{gathered}
\frac{M L^{2}}{2} \cdot \frac{d \omega}{d \theta} \omega=q E L \theta \\
\frac{M L^{2}}{2} \cdot \frac{\omega_{0}^{2}}{2}=q E L \int_{0}^{2 \pi} \theta d \theta \\
\omega_{0}=2 \pi \sqrt{\frac{2 q E}{M L}}
\end{gathered}
$$

where ω_{0} is angular frequency.

Answer to Question \#72320, Physics / Electric Circuits

Answer:

The time period of oscillation:

$$
T=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{M L}{2 q E}}
$$

Answer provided by AssignmentExpert.com

