Answer on Question \#72316, Physics / Mechanics - Relativity

Question A wire under tension vibrates with a frequency of 550 Hz ; what would be the fundamental frequency if the wire were half as long, twice as thick and under vibration in pipes.

Solution The formula for fundamental frequency is

$$
f_{1}=\frac{\sqrt{T L / m}}{2 L}=\frac{1}{2} \sqrt{T / m L}
$$

where L is length of string M is its mass and T is tension. With constant T we have 2 times smaller L and 2 times bigger mass, as it increases in 4 times with increasing thickness in 2 times and decreasing 2 times with decreasing length in 2 times. Hence, we have

$$
f_{1}^{\prime}=\frac{1}{2} \sqrt{\frac{T}{2 m L / 2}}=f_{1}
$$

As we can see, fundamental frequency will not change.

