Answer on Question \#72290, Physics / Optics

Question. Derive the mirror formula.What is the corresponding formula for a thin lens.

Solution.

Consider the object $O P$ shown in Figure. The center of curvature of the mirror is labeled C and is a distance R from the vertex of the mirror, as marked in the figure. The object and image distances are labeled d_{0} and d_{i}, and the object and image heights are labeled h_{0} and h_{i}, respectively. Because the angles ϕ and ϕ^{\prime} are alternate interior angles, we know that they have the same magnitude. However, they must differ in sign if we measure angles from the optical axis, so $\phi=-\phi^{\prime}$. An analogous scenario holds for the angles θ and θ^{\prime}. The law of reflection tells us that they have the same magnitude, but their signs must differ if we measure angles from the optical axis. Thus, $\theta=-\theta^{\prime}$. Taking the tangent of the angles θ and θ^{\prime}, and using the property that $\operatorname{tg}(-\theta)=-\operatorname{tg} \theta$, gives us

$$
\left.\begin{array}{c}
\operatorname{tg} \theta=\frac{h_{0}}{d_{0}} \\
\operatorname{tg} \theta^{\prime}=-\operatorname{tg} \theta=\frac{h_{i}}{d_{i}}
\end{array}\right\} \frac{h_{0}}{d_{0}}=-\frac{h_{i}}{d_{i}} \quad \text { or }-\frac{h_{0}}{h_{i}}=\frac{d_{0}}{d_{i}}
$$

Similarly, taking the tangent of ϕ and ϕ^{\prime} gives

$$
\left.\begin{array}{c}
\operatorname{tg} \phi=\frac{h_{0}}{d_{0}-R} \\
\operatorname{tg} \phi^{\prime}=-\operatorname{tg} \phi=\frac{h_{i}}{R-d_{i}}
\end{array}\right\} \frac{h_{0}}{d_{0}-R}=-\frac{h_{i}}{R-d_{i}} \quad \text { or }-\frac{h_{0}}{h_{i}}=\frac{d_{0}-R}{R-d_{i}} .
$$

Combining these two results gives

$$
\frac{d_{0}}{d_{i}}=\frac{d_{0}-R}{R-d_{i}}
$$

or

$$
\begin{gather*}
d_{0}\left(R-d_{i}\right)=d_{i}\left(d_{0}-R\right) \rightarrow d_{0} R-d_{0} d_{i}=d_{0} d_{i}-d_{i} R \quad \rightarrow \quad 2 d_{0} d_{i}=d_{0} R+d_{i} R \quad \rightarrow \\
\frac{d_{0}+d_{i}}{d_{0} d_{i}}=\frac{2}{R} \quad \rightarrow \quad \frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{2}{R} \quad \text { (1). } \tag{1}
\end{gather*}
$$

No approximation is required for this result, so it is exact. However, in the small-angle approximation, the focal length of a spherical mirror is one-half the radius of curvature of the mirror, or $f=R / 2$. Inserting this into Eq. 1 gives the mirror equation or formula:

$$
\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f}
$$

The mirror equation relates the image and object distances to the focal distance and is valid only in the smallangle approximation. Although it was derived for a concave mirror, it also holds for convex mirrors. We can extend the mirror equation to the case of a plane mirror by noting that a plane mirror has an infinite radius of curvature. This means the focal point is at infinity, so the mirror equation simplifies to

$$
d_{0}=-d_{i} .
$$

As done for spherical mirrors, we can use ray tracing and geometry to show that, for a thin lens,

$$
\frac{1}{d_{0}}+\frac{1}{d_{i}}=\frac{1}{f} .
$$

where f is the focal length of the thin lens. This is the thin-lens equation.

(More detail see Max Born \& Emil Wolf Principles of Optics)

