Answer on Question \#72227-Physics-Mechanics-Relativity

A rubber ball of mass 50 g is thrown towards a vertical wall. It strikes the wall at a horizontal speed of $20 \mathrm{~ms}-1$ and bounces back with a horizontal speed of $18 \mathrm{~ms}-1$ as shown below. The ball is in contact with the wall for 0.080 s .
(i) Calculate the change in momentum of the ball.
(ii) Calculate the average force exerted by the ball on the wall.

Solution

(i) The change in momentum of the ball is

$$
\begin{gathered}
\Delta \boldsymbol{p}=m \boldsymbol{v}_{\text {after }}-m \boldsymbol{v}_{\text {before }} \\
\Delta p=m v_{\text {after }}+m v_{\text {before }}=0.05(20+18)=1.9 \frac{\mathrm{kgm}}{\mathrm{~s}} .
\end{gathered}
$$

(ii) The average force exerted by the ball on the wall is

$$
F=\frac{\Delta p}{t}=\frac{1.9}{0.080}=23.75 \mathrm{~N}
$$

