Answer on Question \#72208, Physics / Other

A 20 kg crate hangs at the end of a long rope. Find its acceleration when the tension on the rope is 250 N .

Solution:

The free-body diagram is shown in figure.
The tension in the rope is F_{T} and the weight of the object is

$$
F_{w}=m g=(20.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=196 \mathrm{~N}
$$

After drawing the free-body diagram, we apply the equation of motion in the y-direction with up taken as positive to get

$$
\begin{gathered}
\sum F_{y}=m a \\
F_{T}-F_{w}=m a
\end{gathered}
$$

So

$$
a=\frac{F_{T}-F_{w}}{m}=\frac{250-196}{20}=2.7 \mathrm{~m} / \mathrm{s}^{2}
$$

Answer: $a=2.7 \mathrm{~m} / \mathrm{s}^{2}$ upward.

