Answer on Question \#72188, Physics / Molecular Physics | Thermodynamics

Question. At the intersection of the Figure below, a yellow subcompact car with mass 950 kg traveling east collides with a red pickup truck with mass 1900 kg that traveling north and ran a red light. The two vehicles stick together as a result of the collision, and the wreckage slides at $16.0 \mathrm{~m} / \mathrm{s}$ in the direction 24.0° east of north y (north). Calculate the speed of each vehicle before the collision. The collision occurs during a heavy rainstorm; you can ignore friction.

Given. $\alpha=24.0^{\circ} ; v_{f}=16.0 \mathrm{~m} / \mathrm{s} ; m_{1}=950 \mathrm{~kg} ; m_{2}=1900 \mathrm{~kg}$.
Find. $v_{1}, v_{2}-$?.

Solution.

According to the Law of Momentum Conservation, we have

$$
m_{1} \vec{v}_{1}+m_{1} \vec{v}_{1}=\left(m_{1}+m_{2}\right) \vec{v}_{f}
$$

in projections on the axis

$$
\begin{aligned}
& X: m_{1} v_{1}=\left(m_{1}+m_{2}\right) v_{f x}=\left(m_{1}+m_{2}\right) v_{f} \sin \alpha \\
& Y: m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{f y}=\left(m_{1}+m_{2}\right) v_{f} \cos \alpha
\end{aligned}
$$

Hence

$$
\begin{aligned}
& v_{1}=\frac{\left(m_{1}+m_{2}\right) v_{f} \sin \alpha}{m_{1}}=\frac{(950+1900) \cdot 16 \cdot \sin 24^{\circ}}{950}=19.5 \mathrm{~m} / \mathrm{s} \\
& v_{2}=\frac{\left(m_{1}+m_{2}\right) v_{f} \cos \alpha}{m_{2}}=\frac{(950+1900) \cdot 16 \cdot \cos 24^{\circ}}{1900}=21.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer. $v_{1}=19.5 \mathrm{~m} / \mathrm{s} ; v_{2}=21.9 \mathrm{~m} / \mathrm{s}$.

