Answer on Question \#72182 Physics / Classical Mechanics

A particle which moves clockwise in a circle with a radius of $R=1.5 \mathrm{~m}$ slows down with constant acceleration from $v_{i}=50 \mathrm{~m} / \mathrm{s}$ to $v_{f}=30 \mathrm{~m} / \mathrm{s}$ in $\tau=5.00 \mathrm{~s}$ at $t=3.00 \mathrm{~s}$ find:
1- tangential acceleration, 2- centripetal acceleration, 3- the angle between the vector of velocity and acceleration.

Solution:

The tangential acceleration

$$
a_{\tau}=\frac{\Delta \omega}{\Delta t}=\frac{v_{f}-v_{i}}{\tau R}=\frac{30-50}{5 \times 1.5}=-2.67 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
$$

Centripetal acceleration

$$
a_{n}(t)=\frac{v^{2}(t)}{R}=\frac{\left(v_{i}+a_{\tau} R t\right)^{2}}{R}=\frac{(50+(-2.67) \times 1.5 \times 3.00)^{2}}{1.5}=962.67 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The angle between the vector of velocity and acceleration

$$
\theta=90^{\circ}+\arctan \frac{\left|a_{\tau}\right|}{a_{n}}=90^{\circ}+\arctan \frac{2.67}{962.67}=90.16^{\circ}
$$

Answers: $-2.67 \frac{\mathrm{rad}}{\mathrm{s}^{2}}, 962.67 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, 90.16^{\circ}$
Answer provided by https://www.AssignmentExpert.com

