Answer on Question \#72177 Physics / Other

A space ship of mass $m=50000 \mathrm{~kg}$ is traveling at a speed of $v_{i}=11500 \mathrm{~m} / \mathrm{s}$ in outer space. Except for the force generated by its own engine, no other force acts on the ship. As the engine exerts a constant force of $F=400000 \mathrm{~N}$, The ship moves a distance of $d=2500000 \mathrm{~m}$ in the direction of the force of the engine. Determine the final speed of the ship.

Solution:

The distance

$$
d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}
$$

So, the final velocity

$$
v_{f}=\sqrt{v_{i}^{2}+2 a d}
$$

From the Newton's second law

$$
F=m a
$$

we obtain the acceleration

$$
a=\frac{F}{m} .
$$

Finally

$$
\begin{gathered}
v_{f}=\sqrt{v_{i}^{2}+\frac{2 F d}{m}} \\
v_{f}=\sqrt{11500^{2}+\frac{2 \times 400000 \times 2500000}{50000}}=13124 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: $13124 \frac{\mathrm{~m}}{\mathrm{~s}}$

