Answer on Question \#72168 Physics / Electric Circuits

The force between two identical spheres each having charge q at some distance apart is F. Third identical sphere is brought firstly in contact with A and then with B finally removed. What is the force between the first two spheres?

Solution:

The Coulomb's law

$$
\mathrm{F}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}=\mathrm{k} \frac{\mathrm{q}^{2}}{\mathrm{r}^{2}}
$$

When a third sphere (no charged) is brought in contact with A sphere having charge q, the both spheres will have same charge $\frac{q+0}{2}=q / 2$.

So new charge of the sphere A is $q_{1}^{\prime}=q / 2$.
When a third sphere (with charge $\mathrm{q} / 2$) is brought in contact with B sphere having charge q , the both spheres will have same charge $\frac{q+\frac{q}{2}}{2}=\frac{3 q}{4}$.

So new charge of the sphere B is $q_{2}^{\prime}=3 q / 4$.
Finally the force between the first two spheres

$$
\mathrm{F}^{\prime}=\mathrm{k} \frac{\mathrm{q}_{1}{ }^{\prime} \mathrm{q}_{2}{ }^{\prime}}{\mathrm{r}^{2}}=\mathrm{k} \frac{3 \mathrm{q}^{2}}{8 \mathrm{r}^{2}}=\frac{3}{8} \mathrm{~F}
$$

Answer: $F^{\prime}=\frac{3}{8} F$

