Answer on Question \#72146-Physics-Other

An iron rod is 1.58 m long at $0^{\circ} \mathrm{C}$. What must n the length of a brass rod at $0^{\circ} \mathrm{C}$ if the difference between the lengths Of the two rods s to remain the same at all temperatures.

Linear expansivity of iron $=1.2 \times 10^{\wedge}(-5) \mathrm{K}^{\wedge}(-1)$
Linear expansivity of brass $=1.9 \times 10^{\wedge}(-5) \mathrm{K}^{\wedge}(-1)$

Solution

$$
L_{2}-L_{1}=\mathrm{const}
$$

Thus,

$$
\begin{aligned}
\Delta L_{2} & =\Delta L_{1} \\
\alpha_{2} \Delta T L_{2} & =\alpha_{1} \Delta T L_{1} \\
\alpha_{2} L_{2} & =\alpha_{1} L_{1}
\end{aligned}
$$

The length of a brass rod at $0^{\circ} \mathrm{C}$ is

$$
L_{2}=\frac{\alpha_{1}}{\alpha_{2}} L_{1}=\frac{1.2 \cdot 10^{-5}}{1.9 \cdot 10^{-5}} 1.58=1.00 \mathrm{~m}
$$

Answer: 1.00 m.

