Answer on Question \#72137 Physics / Other

A man throws a stone over a cliff and hears it strike at the bottom in 8 sec . The temperature is $25^{\circ} \mathrm{C}$. What are the two times; the time that the stone travels and the time that sound travels? What is the height of the cliff in meters?

Solution:

Let us denote by h - the height, by v - the sound velocity, by t_{1} - the time that the stone travels and by t_{2} - the time that sound travels. Thus

$$
\begin{aligned}
& h=\frac{g t_{1}^{2}}{2} \\
& h=v t_{2}
\end{aligned}
$$

Because total time

$$
t_{1}+t_{2}=8 \mathrm{~s}
$$

we find

$$
\sqrt{\frac{2 h}{g}}+\frac{h}{v}=8
$$

After some algebra we obtain equation

$$
h^{2}-v^{2}\left(\frac{16}{v}+\frac{2}{g}\right) h+64 v^{2}=0
$$

Since $v=346 \frac{\mathrm{~m}}{\mathrm{~s}}, g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ we get

$$
h^{2}-29479 h+7661824=0
$$

Root

$$
\begin{gathered}
h=262 \mathrm{~m} . \\
t_{1}=\sqrt{\frac{2 h}{g}}=7.24 \mathrm{~s} \\
t_{2}=\frac{h}{v}=0.76 \mathrm{~s}
\end{gathered}
$$

Answers:

7.24 s ,
0.76 s,

262 m .

