Answer on Question \#72120-Physics-Classical Mechanics

A stationary uranium nucleus disintegrates emitting an alpha particle of mass $6.65 \times 10^{\wedge}-27 \mathrm{~kg}$ and another nucleus X of mass $3.89 \times 10^{\wedge}-25 \mathrm{~kg}$ (they're in opposite direction to one another)

Calculate the ratio velocity alpha particle / velocity nucleus X

Solution

$m_{\alpha}=6.65 \cdot 10^{-27} \mathrm{~kg}$
$m_{x}=3.89 \cdot 10^{-25} \mathrm{~kg}$
From the conservation of momentum:

$$
m_{\alpha} v_{\alpha}=m_{x} v_{x}
$$

The ratio velocity alpha particle / velocity nucleus X is

$$
\frac{v_{\alpha}}{v_{x}}=\frac{m_{x}}{m_{\alpha}}=\frac{3.89 \cdot 10^{-25}}{6.65 \cdot 10^{-27}}=58.5
$$

Answer: 58.5.

Answer provided by https://www.AssignmentExpert.com

