Answer on Question \#72069, Physics / Other

The distance between the earth and the sun is $1.5 \times 10^{8} \mathrm{~km}$ and the radius of the earth is 6400 km . What fraction of energy of the sun does reach the earth?

Solution:

$$
R=1.5 \times 10^{8} \mathrm{~km}
$$

All the Sun's power P passes uniformly through a sphere with radius of R.
Calculate the total surface area of this sphere and call it S

$$
S=4 \pi R^{2}
$$

The Earth's disc also has a surface area that can be calculated from its radius. Call this surface

$$
S_{E}=4 \pi R_{E}^{2}
$$

The fraction of the Sun's power received by the Earth is thus:

$$
f=\frac{P_{E}}{P}=\frac{S_{E}}{S}=\frac{R_{E}^{2}}{R^{2}}=\left(\frac{R_{E}}{R}\right)^{2}
$$

Substituting

$$
f=\left(\frac{6400}{1.5 \times 10^{8}}\right)^{2}=1.82 \times 10^{-9}
$$

Answer: 1.82×10^{-9}.

