Answer on Question \#72040-Physics-Other

A solid cube of side-length 10 cm is hanged from one of its vertices by a 1 m long thread. If the cube is allowed to oscillate, find its angular frequency. (Assume that, the amplitude of oscillation is small, and, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{\wedge}-2$

Solution

The angular frequency of physical pendulum is

$$
\omega=\sqrt{\frac{m g L}{I}}
$$

In our case:

$$
\begin{gathered}
L=1+\frac{0.1}{\sqrt{2}} \\
I=\frac{m a^{2}}{6}+m L^{2} . \\
\omega=\sqrt{\frac{m g L}{\frac{m a^{2}}{6}+m L^{2}}}=\sqrt{\frac{g L}{\frac{a^{2}}{6}+L^{2}}}=\sqrt{\frac{10\left(1+\frac{0.1}{\sqrt{2}}\right)}{\frac{0.1^{2}}{6}+\left(1+\frac{0.1}{\sqrt{2}}\right)^{2}}}=3 \frac{\mathrm{rad}}{\mathrm{~s}} .
\end{gathered}
$$

Answer: $3 \frac{\mathrm{rad}}{\mathrm{s}}$.

Answer provided by AssignmentExpert.com

