Answer on Question \#72006 Physics / Other

A metal ball of mass $m=0.5 \mathrm{~kg}$ is dropped from top of a vertical Clift of height $h=90 \mathrm{~m}$. When it hits the beach below it penetrates to a depth of $S=6.0 \mathrm{~cm}$ calculate the average retarding force of the sand (neglect air resistance).

Solution:

The velocity of the ball when it hits the beach

$$
v_{i}=\sqrt{2 g h}
$$

After penetration in the sad the ball stopped. So final velocity

$$
v_{f}=0
$$

The depth of preparation

$$
S=\frac{v_{i}^{2}-v_{f}^{2}}{2 a}=\frac{v_{i}^{2}}{2 a}=\frac{g h}{a}
$$

Where a is acceleration of the ball due to retarding force of the sand.
The Newton's second law

$$
F=m a
$$

gives

$$
\begin{gathered}
F=m \frac{g h}{S} \\
F=\frac{0.5 \times 10 \times 90}{0.06}=7500 \mathrm{~N}=7.5 \mathrm{kN} .
\end{gathered}
$$

Answer: $F=7.5 \mathrm{kN}$.

