Answer on Question \# 71942, Physics / Mechanics | Relativity

Question

a) A gas is contained in a vessel of volume 0.02 m 3 at a pressure of 300 kPa and a temperature of $15^{\circ} \mathrm{C}$. The gas is passed into a vessel of volume 0.015 m 3 . Determine to what temperature the gas must be cooled for the pressure to remain the same
b) The piston of an air compressor compresses air to $1 / 4$ of its original volume during its stroke.

Determine the final pressure of the air if the original pressure is 100 kPa , assuming an isothermal change. The characteristic gas constant for air is $287 \mathrm{Jkg}-1 \mathrm{~K}-1$

Solution. To solve these problems we use the ideal gas law

$$
\begin{equation*}
P V=n R T \tag{1}
\end{equation*}
$$

where P is the absolute pressure of a gas, V is the volume it occupies, n is the number of moles, R is the universal gas constant, T is the absolute temperature (in units of Kelvins) of a gas
a) We know the initial volume $V_{0}=0.02 \mathrm{~m}^{3}$, the initial pressure $P_{0}=300 \mathrm{kPa}=3 \cdot 10^{5} \mathrm{~Pa}$, the initial temperature $T_{0}=15^{\circ} \mathrm{C}$, the final volume $V_{f}=0.015 \mathrm{~m}^{3}$ and the final pressure which is the same as the initial pressure $P_{f}=P_{0}=3 \cdot 10^{5} \mathrm{~Pa}$. We must find the final temperature T_{f}. Use the equation (1) twice

$$
\begin{aligned}
& P_{0} V_{0}=n R T_{0} \\
& P_{f} V_{f}=n R T_{f}
\end{aligned}
$$

Divide $P_{0} V_{0}$ by $P_{f} V_{f}$

$$
\frac{P_{0} V_{0}}{P_{f} V_{f}}=\frac{n_{0} R T_{0}}{n_{f} R T_{f}}
$$

Since the pressure is constant, P_{f} and P_{0} are the same and they cancel out. The same is true for n_{f} and n_{0}, as well as for R, which is a constant. Therefore

$$
\frac{V_{0}}{V_{f}}=\frac{T_{0}}{T_{f}}
$$

and we have Charles' law. Find T_{f}

$$
T_{f}=T_{0} \frac{V_{f}}{V_{0}}
$$

Convert temperature T_{0} from Celsius to Kelvin.

$$
T_{0}=(15.0+273) \mathrm{K}=288 \mathrm{~K}
$$

Substitute the known values into the equation

$$
T_{f}=288 \mathrm{~K} \cdot \frac{0.015 \mathrm{~m}^{3}}{0.02 \mathrm{~m}^{3}}=216 \mathrm{~K}
$$

Convert temperature T_{f} from Kelvin to Celsius

$$
T_{f}=(216-273){ }^{\circ} \mathrm{C}=-57^{\circ} \mathrm{C}
$$

b) We know the initial pressure $P_{0}=100 \mathrm{kPa}$, the final volume $V_{f}=(1 / 4) V_{0}$ and final temperature is equal to initial temperature, $T_{f}=T_{0}$. We must find the final pressure P_{f}. Use the equation (1) twice

$$
\begin{aligned}
& P_{0} V_{0}=n R T_{0} \\
& P_{f} V_{f}=n R T_{f}
\end{aligned}
$$

Divide $P_{0} V_{0}$ by $P_{f} V_{f}$

$$
\frac{P_{0} V_{0}}{P_{f} V_{f}}=\frac{n_{0} R T_{0}}{n_{f} R T_{f}}
$$

Since the temperature is constant T_{f} and T_{0} cancel out. The same is true for n_{f} and n_{0}, as well as for R, which is a constant. Therefore

$$
\frac{P_{0} V_{0}}{P_{f} V_{f}}=1
$$

or

$$
P_{0} V_{0}=P_{f} V_{f}
$$

and we have Boyle's law. Find P_{f}

$$
P_{f}=P_{0} \frac{V_{0}}{V_{f}}
$$

Substitute the known values into the equation

$$
P_{f}=100 \mathrm{kPa} \frac{V_{0}}{(1 / 4) V_{0}}=400 \mathrm{kPa}
$$

Answer:

a) The gas must be cooled for $T_{f}=-57{ }^{\circ} \mathrm{C}$
b) The final pressure of the air is $P_{f}=400 \mathrm{kPa}$

Answer provided by https://www.AssignmentExpert.com

