Answer on Question \#71939 - Physics - Electromagnetism

show that the function $u(x, t)=e^{\wedge}-\mu t \sin x$ is a solution of the one-dimensional heat equation
Solution: one-dimensional heat equation has the form:

$$
\frac{\partial u}{\partial t}-\mu \frac{\partial^{2} u}{d x^{2}}=0
$$

Let us put this $u(x, t)$ into the equation:

$$
\begin{aligned}
\frac{\partial\left(e^{-\mu t} \sin x\right)}{\partial t} & -\mu \frac{\partial^{2}\left(e^{-\mu t} \sin x\right)}{d x^{2}}=\sin x \frac{\partial\left(e^{-\mu t}\right)}{\partial t}-\mu e^{-\mu t} \frac{\partial^{2}(\sin x)}{d x^{2}}=-\mu u(x, t)+\mu u(x, t) \\
& =0
\end{aligned}
$$

what means that this function actually is a solution.
Answer provided by https://www.AssignmentExpert.com

