Answer on Question \#71926-Physics-Mechanics-Relativity

A sliding mechanism in a machine moves with a velocity given by the expression:
$v=7 t+0.8 t^{2} \mathrm{~mm} / \mathrm{s}$
Calculate the displacement that occurs between $\mathrm{t}=2$ and $\mathrm{t}=4$ seconds

Solution

The displacement that occurs between $\mathrm{t}=2$ and $\mathrm{t}=4$ seconds is

$$
\begin{gathered}
d=\int_{2}^{4} v(t) d t \\
d=\int_{2}^{4}\left(7 t+0.8 t^{2}\right) d t=\left(\frac{7 t^{2}}{2}+\frac{0.8 t^{3}}{3}\right)_{2}^{4}=\left(7 \frac{4^{2}}{2}+0.8 \frac{4^{3}}{3}\right)-\left(7 \frac{2^{2}}{2}+0.8 \frac{2^{3}}{3}\right)=57 \mathrm{~mm}=0.057 \mathrm{~m} .
\end{gathered}
$$

Answer: 0.057 m .
Answer provided by https://www.AssignmentExpert.com

