Answer on Question 71890, Physics, Other

Question:

A brass ball is shot vertically upward from the surface of an atmosphere-free planet with an initial speed of $20 \mathrm{~m} / \mathrm{s}$. One second later, the ball has an instantaneous velocity in the upward direction of $15 \mathrm{~m} / \mathrm{s}$. How high does the ball rise?

Solution:

Let's first find the acceleration due to gravity on the planet from the kinematic equation:

$$
v=v_{0}+g t
$$

Then, we get:

$$
g=\frac{v-v_{0}}{t}=\frac{15 \frac{\mathrm{~m}}{\mathrm{~s}}-20 \frac{\mathrm{~m}}{\mathrm{~s}}}{1.0 \mathrm{~s}}=-5.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The sign minus indicates that the acceleration due to gravity directed downward to the surface of the planet.

Then, we can find the time, $t_{\text {max }}$, that needs the ball to reach the maximum height from the same kinematic equation (also, at maximum height $v=0$):

$$
\begin{gathered}
0=v_{0}+g t_{\max } \\
t_{\max }=-\frac{v_{0}}{-g}=-\frac{20 \frac{\mathrm{~m}}{\mathrm{~s}}}{-5.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=4.0 \mathrm{~s}
\end{gathered}
$$

Finally, we can find how high does the ball rise from another kinematic equation:

$$
h_{\max }=v_{0} t_{\max }+\frac{1}{2} g t_{\max }^{2}=20 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 4.0 \mathrm{~s}-\frac{1}{2} \cdot 5.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(4.0 \mathrm{~s})^{2}=40.0 \mathrm{~m} .
$$

Answer:

$h_{\max }=40.0 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

