Question \#71873, Physics / Mechanics | Relativity |

A solid lead sphere of volume $0.5 \mathrm{~m}^{3}$ is lowered to a depth in the ocean where the water pressure is equal to $2 * 10^{\wedge} 7 \mathrm{~N} / \mathrm{m}^{2}$. The bulk modulus of lead is equal to $7.7^{*} 10^{\wedge} 9 \mathrm{~N} / \mathrm{m}^{2}$. What is the change in volume of the sphere??

Need to find: dV - ?
$\mathrm{V}=0.5 \mathrm{~m}^{3}$
$\mathrm{p}_{0}=2 * 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
The atmospheric pressure is $\mathrm{p}=1.013 \times 10^{5} \mathrm{~Pa}$
The bulk modulus of lead is equal to $\mathrm{K}=7.7 * 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

Solution

The bulk modulus (K) of a substance measures the substance's resistance to uniform compression. It is defined as the pressure increase needed to cause a given relative decrease in volume.
$K=-V\left(\frac{d p}{d V}\right)$
Here, $\mathrm{dp}=2 * 10^{7}-1.013 * 10^{5}=1.39987 * 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
Hence, $d V=\left(-V \frac{d p}{K}\right)=-0.5 \cdot\left(\frac{1.98 \cdot 10^{7}}{7.7 \cdot 10^{9}}\right)=1.3 \cdot 10^{-3} \mathrm{~m}^{3}$
Answer $-\mathrm{V}=1.3 \cdot 10^{-3} \mathrm{~m}^{3}$. The negative sign implies that there is a reduction in Volume

