

Answer on Question #71866, Physics / Electromagnetism

Question. A steel ring, having a mean circumference of **750 mm** and a cross-sectional area of **500 mm²**, is wound with a magnetizing coil of **120** turns. Using the following data, calculate the current required to set up a magnetic flux of **630 μWb** in the ring.

Flux density (T)	0.9	1.1	1.2	1.3
Magnetic field strength (A/m)	260	450	600	820

Given.

$$l = 750 \text{ mm} = 0.75 \text{ m};$$

$$S = 500 \text{ mm}^2 = 500 \cdot 10^{-6} \text{ m}^2;$$

$$N = 120;$$

$$\Phi = 630 \mu\text{Wb} = 630 \cdot 10^{-6} \text{ Wb}.$$

Find.

$$I - ?.$$

Solution.

Flux density

$$B = \frac{\Phi}{S} = \frac{630 \cdot 10^{-6}}{500 \cdot 10^{-6}} = 1.26 \text{ T}$$

From the given table, when $B = 1.26 \text{ T}$, $H \approx 730 \text{ A/m}$

Magnetomotive force, $m.m.f. = H \cdot l = N \cdot I$

From which, current,

$$I = \frac{H \cdot l}{N} = \frac{730 \cdot 0.75}{120} = 4.56 \text{ A}$$

Answer. $I = 4.56 \text{ A}$.

Answer provided by <https://www.AssignmentExpert.com>