Question. A steel ring, having a mean circumference of 750 mm and a cross-sectional area of 500 mm², is wound with a magnetizing coil of 120 turns. Using the following data, calculate the current required to set up a magnetic flux of $630 \mu Wb$ in the ring.

Flux density (T)	0.9	1.1	1.2	1.3
Magnetic field strength (A/m)	260	450	600	820

Given.

l = 750 mm = 0.75 m;

 $S = 500 \ mm^2 = 500 \cdot 10^{-6} \ m^2;$

N = 120;

 $\Phi = 630 \ \mu Wb = 630 \cdot 10^{-6} \ Wb.$

Find.

I−?.

Solution.

Flux density

$$B = \frac{\Phi}{S} = \frac{630 \cdot 10^{-6}}{500 \cdot 10^{-6}} = 1.26 T$$

From the given table, when B = 1.26 T, $H \approx 730 A/m$

Magnetomotive force, $m. m. f. = H \cdot l = N \cdot I$

From which, current,

$$I = \frac{H \cdot l}{N} = \frac{730 \cdot 0.75}{120} = 4.56 \,A$$

Answer. *I* = 4.56 *A*.

Answer provided by https://www.AssignmentExpert.com