Answer on Question 71825, Physics, Other

Question:

The inlet section of a wind tunnel has a diameter of 500 mm and the intake air velocity is $25 \mathrm{~m} / \mathrm{s}$. If the working section requires an air velocity of $50 \mathrm{~m} / \mathrm{s}$ calculate the cross-sectional area and diameter of the working section.

Solution:

We can find the cross-sectional area and diameter of the working section from the Law of Continuity:

$$
A_{i} v_{i}=A_{w} v_{w}
$$

here, $A_{i}=\frac{\pi d_{i}^{2}}{4}, A_{w}=\frac{\pi d_{w}^{2}}{4}$ are the cross-sectional areas of the inlet and working section of a wind tunnel, respectively; d_{i}, d_{w} are diameters of the inlet and working sections of a wind tunnel, respectively; v_{i} is the intake air velocity in the inlet section of the wind tunnel; v_{w} is the air velocity in the working section of the wind tunnel.

Let's first calculate the cross-sectional area of the working section:

$$
A_{w}=\frac{A_{i} v_{i}}{v_{w}}=\frac{\frac{\pi d_{i}^{2}}{4} \cdot v_{i}}{v_{w}}=\frac{\frac{\pi \cdot(0.5 \mathrm{~m})^{2}}{4} \cdot 25 \frac{\mathrm{~m}}{\mathrm{~s}}}{50 \frac{\mathrm{~m}}{\mathrm{~s}}}=0.098 \mathrm{~m}^{2}
$$

Finally, we can calculate the diameter of the working section:

$$
\begin{gathered}
A_{w}=\frac{\pi d_{w}^{2}}{4} \\
d_{w}=\sqrt{\frac{4 A_{w}}{\pi}}=\sqrt{\frac{4 \cdot 0.098 \mathrm{~m}^{2}}{\pi}}=0.35 \mathrm{~m}
\end{gathered}
$$

Answer:

$$
A_{w}=0.098 \mathrm{~m}^{2}, d_{w}=0.35 \mathrm{~m} .
$$

Answer provided by https://www.AssignmentExpert.com

