

Answer on Question #71713, Physics / Other

The driver of a car travelling at a constant speed of 72 kmph, seeing a procession ahead of him moving in the same direction, decelerates at a constant rate of 1m/s^2 until his speed is reduced to 3 kmph. He moves at this speed for 2 minutes until the procession takes a left turn. He then accelerates at a constant rate of 0.5 m/s^2 to his normal speed. Determine the total distance travelled during this time and the time lost.

Solution

$$72 \text{ km/h} = 20 \text{ m/s}$$

$$3 \text{ km/h} = 0.83 \text{ m/s}$$

Deceleration stage

$$t_1 = \frac{0.83 - 20}{-1} = 19.17 \text{ s};$$

$$d_1 = \frac{0.83^2 - 20^2}{2 \times (-1)} = 199.66 \text{ m}$$

Motion at constant speed

$$t_2 = 120 \text{ s};$$

$$d_2 = 120 \times 0.83 = 99.6 \text{ m}$$

Acceleration stage

$$t_3 = \frac{20 - 0.83}{0.5} = 38.34 \text{ s};$$

$$d_3 = \frac{20^2 - 0.83^2}{2 \times 0.5} = 399.31 \text{ m}$$

Total distance

$$d = 199.66 + 99.6 + 399.31 = 698 \text{ m}$$

Time to move same distance at normal speed

$$t = \frac{698}{20} = 34.9 \text{ s}$$

Time lost

$$\Delta t = 19.17 + 120 + 38.34 - 34.9 = 142.61 \text{ s} = 2.4 \text{ min}$$

Answer: 698 m; 2.4 min.

Answer provided by <https://www.AssignmentExpert.com>