Answer on Question \#71678-Physics-Other

Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of $m A=16.6 \mathrm{~kg}$ and an initial velocity of $0 \mathrm{~A}=$ $8.72 \mathrm{~m} / \mathrm{s}$, due east. Object B, however, has a mass of $m B=29.8 \mathrm{~kg}$ and an initial velocity of $0 B=5.07 \mathrm{~m} / \mathrm{s}$, due north. Find the (a) magnitude and (b) direction of the total momentum of the two-object system after the collision.

Solution

The x-component (East) of the total momentum is

$$
p_{x}=m_{a} v_{a}=(16.6)(8.72)=144.752 \frac{\mathrm{kgm}}{\mathrm{~s}}
$$

The y-component (North) of the total momentum is

$$
p_{y}=m_{b} v_{b}=(29.8)(5.07)=151.086 \frac{\mathrm{kgm}}{\mathrm{~s}}
$$

(a) The magnitude of the total momentum of the two-object system after the collision is

$$
p=\sqrt{p_{x}^{2}+p_{y}^{2}}=\sqrt{(144.752)^{2}+(151.086)^{2}}=209 \frac{\mathrm{kgm}}{\mathrm{~s}}
$$

(b) The direction of the total momentum of the two-object system after the collision is

$$
\theta=\tan ^{-1}\left(\frac{p_{y}}{p_{x}}\right)=\tan ^{-1}\left(\frac{151.086}{144.752}\right)=46.2^{\circ} \text { north of east. }
$$

Answer provided by https://www.AssignmentExpert.com

