Answer on Question \# 71590, Physics / Mechanics | Relativity

Question

A blue lab cart is traveling west on a track when it collides with and sticks to a red lab cart traveling east. The magnitude of the momentum of the blue cart before the collision is 2.0 kilogram • meters per second, and the magnitude of the momentum of the red cart before the collision is 3.0 kilogram • meters per second. The magnitude of the total momentum of the two carts after the collision is

Solution. Use the Conservation of Momentum Principle:
If the net external force acting on a system of objects is zero, the total momentum $p_{t o t}$ of the system is conserved.

For this problem we have

$$
p_{t o t}=p_{\text {red }}+p_{\text {blue }}=\mathrm{const}
$$

where $p_{\text {red }}$ is the magnitude of the momentum of the red cart before the collision

$$
p_{\text {red }}=3.0 \text { kilogram } \bullet \text { meters per second }
$$

and $p_{\text {blue }}$ is the magnitude of the momentum of the blue cart before the collision

$$
p_{\text {blue }}=-2.0 \text { kilogram } \bullet \text { meters per second }
$$

$p_{\text {blue }}$ has the minus sign since blue cart moves towards the opposite of the red cart

Find the total momentum $p_{\text {tot }}$ before the collision

$$
p_{t o t}=3.0-2.0=1.0 \text { kilogram } \bullet \text { meters per second }
$$

Since the total momentum $p_{\text {tot }}$ of the system is conserved, then the total momentum of the two carts after the collision is the same as before the collision

$$
p_{t o t}=1.0 \text { kilogram } \bullet \text { meters per second }
$$

Answer: The magnitude of the total momentum of the two carts after the collision is 1.0 kilogram • meters per second.

Answer provided by https://www.AssignmentExpert.com

