


Answer on Question #71521, Physics / Mechanics | Relativity

Question. A bullet is fired at a 10° angle from a rifle having a muzzle velocity of 150 m/sec . How many seconds is the bullet in the air? How far does the bullet travel horizontally before striking the ground? How far does the bullet rise before beginning to fall?

Given. $\alpha = 10^\circ$; $v_0 = 150 \text{ m/s}$.

Find. $t, S, h_{\max} - ?$.

Solution.

The initial horizontal velocity is $v_{0x} = v_0 \cos \alpha$ and the initial vertical velocity is $v_{0y} = v_0 \sin \alpha$. So

$$y = v_{0y}t - \frac{gt^2}{2} \quad \text{and} \quad v_y = v_{0y} - gt = v_0 \sin \alpha - gt$$

If $y = h_{\max}$ then $v_y = 0$. Hence

$$t_1 = \frac{v_{0y}}{g} = \frac{v_0 \sin \alpha}{g}, \quad t_1 = t_2 \quad \rightarrow \quad t = t_1 + t_2 = \frac{2v_0 \sin \alpha}{g} = \frac{2 \cdot 150 \cdot \sin 10}{9.8} = \mathbf{5.3 \text{ s.}}$$

t_1 is the time during which the bullet was moving upwards; t_2 is the time during which the bullet was moving downwards.

$$S = v_{0x}t = v_0 \cos \alpha \frac{2v_0 \sin \alpha}{g} = \frac{v_0^2 \sin 2\alpha}{g} = \frac{150^2 \cdot \sin 20^\circ}{9.8} = \mathbf{785 \text{ m.}}$$

$$y = h_{\max} = v_{0y}t_1 - \frac{gt_1^2}{2} = v_0 \sin \alpha \cdot \frac{v_0 \sin \alpha}{g} - \frac{g}{2} \left(\frac{v_0 \sin \alpha}{g} \right)^2 = \frac{v_0^2 \sin^2 \alpha}{2g} = \frac{150^2 \cdot \sin^2 10^\circ}{2 \cdot 9.8} = \mathbf{34.6 \text{ m.}}$$

Answer. $t = 5.3 \text{ s}; S = 785 \text{ m}; h_{\max} = 34.6 \text{ m.}$

Answer provided by <https://www.AssignmentExpert.com>